Colisiones elásticas e inelásticas: ¿cuál es la diferencia? (con ejemplos)

Posted on
Autor: John Stephens
Fecha De Creación: 1 Enero 2021
Fecha De Actualización: 20 Noviembre 2024
Anonim
Colisiones elásticas e inelásticas: ¿cuál es la diferencia? (con ejemplos) - Ciencias
Colisiones elásticas e inelásticas: ¿cuál es la diferencia? (con ejemplos) - Ciencias

Contenido

El termino elástico probablemente trae a la mente palabras como elástico o flexible, una descripción de algo que se recupera fácilmente. Cuando se aplica a una colisión en física, esto es exactamente correcto. Dos pelotas de juegos que se juntan y luego rebotan tenían lo que se conoce como colisión elástica.


Por el contrario, cuando un automóvil se detuvo en un semáforo en rojo es chocado por un camión, ambos vehículos se pegan y luego se mueven juntos en la intersección a la misma velocidad, sin rebotes. Esto es un colisión inelástica.

TL; DR (demasiado largo; no leído)

Si los objetos son atrapados juntos ya sea antes o después de una colisión, la colisión es no elástico; si todos los objetos comienzan y terminan moviéndose por separado el uno del otro, la colisión es elástico.

Tenga en cuenta que las colisiones inelásticas no siempre necesitan mostrar objetos pegados después La colisión. Por ejemplo, dos vagones de tren podrían comenzar conectados, moviéndose a una velocidad, antes de que una explosión los impulse en direcciones opuestas.

Otro ejemplo es este: una persona en un bote en movimiento con cierta velocidad inicial podría arrojar una caja por la borda, cambiando así las velocidades finales del bote más la persona y la caja. Si esto es difícil de entender, considere el escenario al revés: una caja cae sobre un bote. Inicialmente, la caja y el bote se movían con velocidades separadas, luego, su masa combinada se mueve con una velocidad.


En contraste, un colisión elástica describe el caso cuando los objetos que se golpean entre sí comienzan y terminan con sus propias velocidades. Por ejemplo, dos patinetas se acercan entre sí desde direcciones opuestas, chocan y luego rebotan hacia donde vinieron.

TL; DR (demasiado largo; no leído)

Si los objetos en una colisión nunca se pegan, ya sea antes o después de tocarlos, la colisión es al menos en parte elástico.

¿Cuál es la diferencia matemáticamente?

La ley de conservación del momento se aplica igualmente en colisiones elásticas o inelásticas en un sistema aislado (sin fuerza externa neta), por lo que la matemática es la misma. El impulso total no puede cambiar. Entonces, la ecuación de impulso muestra todas las masas multiplicadas por sus respectivas velocidades antes de la colisión (ya que el momento es masa por velocidad) igual a todas las masas por sus respectivas velocidades después de la colisión.


Para dos masas, se ve así:

metro1v1i + m2v2i = m1v1f + m2v2f

Donde m1 es la masa del primer objeto, m2 es la masa del segundo objeto, vyo es la velocidad de masa inicial correspondiente y VF es su velocidad final

Esta ecuación funciona igualmente bien para colisiones elásticas e inelásticas.

Sin embargo, a veces se representa un poco diferente para colisiones inelásticas. Esto se debe a que los objetos se unen en una colisión inelástica (piense en el auto que choca el camión con la parte trasera) y luego, actúan como una gran masa que se mueve con una sola velocidad.

Entonces, otra forma de escribir matemáticamente la misma ley de conservación del momento para colisiones inelásticas es:

metro1v1i + m2v2i = (metro1 + m2) vF

o

(metro1 + m2) vyo = metro1v1if+ m2v2f

En el primer caso, los objetos se pegaron después de la colisión, por lo que las masas se suman y se mueven con una velocidad después del signo igual. Lo contrario es cierto en el segundo caso.

Una distinción importante entre estos tipos de colisiones es que la energía cinética se conserva en una colisión elástica, pero no en una colisión inelástica. Entonces, para dos objetos que chocan, la conservación de la energía cinética se puede expresar como:

La conservación de la energía cinética es en realidad un resultado directo de la conservación de la energía en general para un sistema conservador. Cuando los objetos colisionan, su energía cinética se almacena brevemente como energía potencial elástica antes de volver a transferirse perfectamente a la energía cinética.

Dicho esto, la mayoría de los problemas de colisión en el mundo real no son perfectamente elásticos ni inelásticos. Sin embargo, en muchas situaciones, la aproximación de cualquiera de ellos es lo suficientemente cercana para los propósitos de los estudiantes de física.

Ejemplos de colisión elástica

1. Una bola de billar de 2 kg rodando por el suelo a 3 m / s golpea otra bola de billar de 2 kg que inicialmente estaba quieta. Después de golpear, la primera bola de billar está quieta pero la segunda bola de billar ahora se está moviendo. ¿Cuál es su velocidad?

La información dada en este problema es:

metro1 = 2 kg

metro2 = 2 kg

v1i = 3 m / s

v2i = 0 m / s

v1f = 0 m / s

El único valor desconocido en este problema es la velocidad final de la segunda bola, v2f.

Al conectar el resto a la ecuación que describe la conservación del momento, se obtiene:

(2 kg) (3 m / s) + (2 kg) (0 m / s) = (2 kg) (0 m / s) + (2 kg) v2f

Resolviendo para v2f :

v2f = 3 m / s

La dirección de esta velocidad es la misma que la velocidad inicial de la primera bola.

Este ejemplo muestra un colisión perfectamente elástica, dado que la primera bola transfirió toda su energía cinética a la segunda bola, cambiando efectivamente sus velocidades. En el mundo real, no hay perfectamente colisiones elásticas porque siempre hay algo de fricción que hace que parte de la energía se transforme en calor durante el proceso.

2. Dos rocas en el espacio chocan de frente entre sí. El primero tiene una masa de 6 kg y viaja a 28 m / s; el segundo tiene una masa de 8 kg y se mueve a 15 Sra. ¿Con qué velocidad se alejan el uno del otro al final de la colisión?

Debido a que esta es una colisión elástica, en la cual se conservan el momento y la energía cinética, se pueden calcular dos velocidades finales desconocidas con la información dada. Las ecuaciones para ambas cantidades conservadas se pueden combinar para resolver las velocidades finales como esta:

Enchufar la información dada (tenga en cuenta que la velocidad inicial de las segundas partículas es negativa, lo que indica que viajan en direcciones opuestas):

v1f = -21.14m / s

v2f = 21.86 m / s

El cambio en los signos de la velocidad inicial a la velocidad final para cada objeto indica que al chocar, ambos rebotaron entre sí hacia la dirección de donde vinieron.

Ejemplo de colisión inelástica

Una animadora salta del hombro de otras dos animadoras. Caen a una velocidad de 3 m / s. Todas las animadoras tienen masas de 45 kg. ¿Qué tan rápido se mueve la primera animadora hacia arriba en el primer momento después de que salta?

Este problema tiene tres misas, pero siempre que las partes del antes y el después de la ecuación que muestran la conservación del momento se escriban correctamente, el proceso de resolución es el mismo.

Antes de la colisión, las tres animadoras están unidas y. Pero nadie se mueve. Entonces, la vyo ¡para estas tres masas es 0 m / s, haciendo que todo el lado izquierdo de la ecuación sea igual a cero!

Después de la colisión, dos animadoras están unidas, moviéndose con una velocidad, pero la tercera se mueve en sentido contrario con una velocidad diferente.

En total, esto se ve así:

(m1 + m2 + m3) (0 m / s) = (m1 + m2) v1,2f + m3v3f

Con números sustituidos y estableciendo un marco de referencia donde hacia abajo es negativo:

(45 kg + 45 kg + 45 kg) (0 m / s) = (45 kg + 45 kg) (- 3 m / s) + (45 kg) v3f

Resolviendo para v3f:

v3f = 6 m / s