Contenido
Las ecuaciones cuadráticas forman una parábola cuando se grafican. La parábola puede abrirse hacia arriba o hacia abajo, y puede desplazarse hacia arriba o hacia abajo u horizontalmente, dependiendo de las constantes de la ecuación cuando la escribe en la forma y = ax al cuadrado + bx + c. Las variables y y x se grafican en los ejes y y x, y a, byc son constantes. Según la altura de la parábola en el eje y, una ecuación puede tener cero, una o dos intersecciones en x, pero siempre tendrá una intersección en y.
Verifique para asegurarse de que su ecuación sea una ecuación cuadrática escribiéndola en la forma y = ax al cuadrado + bx + c donde a, b y c son constantes y a no es igual a cero. Encuentre la intersección con el eje y para la ecuación dejando que x sea igual a cero. La ecuación se convierte en y = 0x al cuadrado + 0x + co o y = c. Tenga en cuenta que la intersección y de una ecuación cuadrática escrita en la forma y = ax al cuadrado + bx = c siempre será la constante c.
Para encontrar las intersecciones x de una ecuación cuadrática, deje y = 0. Escriba la nueva ecuación ax al cuadrado + bx + c = 0 y la fórmula cuadrática que da la solución como x = -b más o menos la raíz cuadrada de ( b al cuadrado - 4ac), todo dividido por 2a. La fórmula cuadrática puede dar cero, una o dos soluciones.
Resuelve la ecuación 2x al cuadrado - 8x + 7 = 0 para encontrar dos intersecciones en x. Coloque las constantes en la fórmula cuadrática para obtener - (- 8) más o menos la raíz cuadrada de (-8 al cuadrado - 4 veces 2 veces 7), todo dividido por 2 veces 2. Calcule los valores para obtener 8 +/- cuadrado raíz (64 - 56), todo dividido por 4. Simplifique el cálculo para obtener (8 +/- 2.8) / 4. Calcule la respuesta como 2.7 o 1.3. Tenga en cuenta que esto representa la parábola que cruza el eje x en x = 1.3 a medida que disminuye al mínimo y luego se cruza nuevamente en x = 2.7 a medida que aumenta.
Examine la fórmula cuadrática y observe que hay dos soluciones debido al término debajo de la raíz cuadrada. Resuelve la ecuación x al cuadrado + 2x +1 = 0 para encontrar las intersecciones con el eje x. Calcule el término debajo de la raíz cuadrada de la fórmula cuadrática, la raíz cuadrada de 2 al cuadrado - 4 por 1 por 1, para obtener cero. Calcule el resto de la fórmula cuadrática para obtener -2/2 = -1, y observe que si el término debajo de la raíz cuadrada de la fórmula cuadrática es cero, la ecuación cuadrática solo tiene una intersección x, donde la parábola solo toca el eje x
De la fórmula cuadrática, tenga en cuenta que si el término debajo de la raíz cuadrada es negativo, la fórmula no tiene solución y la ecuación cuadrática correspondiente no tendrá intersecciones con el eje x. Aumente c, en la ecuación del ejemplo anterior, a 2. Resuelva la ecuación 2x al cuadrado + x + 2 = 0 para obtener las intersecciones con el eje x. Usa la fórmula cuadrática para obtener -2 +/- raíz cuadrada de (2 al cuadrado - 4 veces 1 por 2), todo dividido por 2 veces 1. Simplifica para obtener -2 +/- raíz cuadrada de (-4), todo dividido por 2. Tenga en cuenta que la raíz cuadrada de -4 no tiene una solución real, por lo que la fórmula cuadrática muestra que no hay intersecciones con el eje x. Grafica la parábola para ver que el aumento de c ha elevado la parábola por encima del eje x para que la parábola ya no la toque o se cruce con ella.