Cómo calcular derivados parciales FXY

Posted on
Autor: Monica Porter
Fecha De Creación: 19 Marcha 2021
Fecha De Actualización: 18 Noviembre 2024
Anonim
Cómo calcular derivados parciales FXY - Ciencias
Cómo calcular derivados parciales FXY - Ciencias

Las derivadas parciales en el cálculo son derivadas de funciones multivariadas tomadas con respecto a una sola variable en la función, tratando otras variables como si fueran constantes. Se pueden tomar derivados repetidos de una función f (x, y) con respecto a la misma variable, produciendo derivados Fxx y Fxxx, o tomando la derivada con respecto a una variable diferente, produciendo derivados Fxy, Fxyx, Fxyy, etc. Parcial Los derivados son típicamente independientes del orden de diferenciación, lo que significa Fxy = Fyx.


    Calcule la derivada de la función f (x, y) con respecto a x determinando d / dx (f (x, y)), tratando a y como si fuera una constante. Use la regla del producto y / o la regla de la cadena si es necesario. Por ejemplo, la primera derivada parcial Fx de la función f (x, y) = 3x ^ 2 * y - 2xy es 6xy - 2y.

    Calcule la derivada de la función con respecto a y determinando d / dy (Fx), tratando x como si fuera una constante. En el ejemplo anterior, la derivada parcial Fxy de 6xy - 2y es igual a 6x - 2.

    Verifique que la derivada parcial Fxy sea correcta calculando su equivalente, Fyx, tomando las derivadas en el orden opuesto (d / dy primero, luego d / dx). En el ejemplo anterior, la derivada d / dy de la función f (x, y) = 3x ^ 2 * y - 2xy es 3x ^ 2 - 2x. La derivada d / dx de 3x ^ 2 - 2x es 6x - 2, por lo que la derivada parcial Fyx es idéntica a la derivada parcial Fxy.