Cómo factorizar polinomios y trinomios

Posted on
Autor: Louise Ward
Fecha De Creación: 5 Febrero 2021
Fecha De Actualización: 23 Noviembre 2024
Anonim
Cómo factorizar polinomios y trinomios - Ciencias
Cómo factorizar polinomios y trinomios - Ciencias

Contenido

Factorizar un polinomio o trinomio significa que lo expresa como un producto. Factorizar polinomios y trinomios es importante cuando resuelve ceros. La factorización no solo facilita la búsqueda de la solución, sino que dado que estas expresiones involucran exponentes, puede haber más de una solución. Existen varios enfoques para factorizar polinomios y trinomios, y el enfoque utilizado variará. Estos métodos incluyen encontrar el máximo factor común, factorizar por agrupación y el método FOIL.


Máximo común divisor

    Busque el máximo factor común, si hay uno, antes de factorizar cualquier polinomio o trinomio. En general, la forma más rápida de hacerlo es mediante la factorización prima, es decir, utilizando números primos para expresar el número como producto. En algunos polinomios, el mayor factor común también puede incluir la variable.

    Considere los números 20 y 30. La factorización prima de 20 es 2 x 2 x 5 y la factorización prima de 30 es 2 x 3 x 5. Los factores comunes son dos y cinco. Dos por cinco es igual a 10, entonces 10 es el máximo factor común.

    Verifique el resultado de la factorización multiplicando. Puede factorizar la expresión 7x ^ 2 + 14 a 7 (x ^ 2 + 2). Cuando esta factorización se multiplica, vuelve a la expresión original, 7x ^ 2 + 14, por lo tanto, es correcta.

Agrupamiento

    Factoriza ciertos polinomios con cuatro términos usando la factorización agrupando.


    Considere el polinomio x ^ 3 + x ^ 2 + 2x + 2, en el que no hay otro factor que no sea común a todos los términos.

    Factoriza x ^ 3 + x ^ 2 y 2x + 2 por separado: x ^ 3 + x ^ 2 = x ^ 2 (x + 1) y 2x + 2 = 2 (x + 1). Por lo tanto, x ^ 3 + x ^ 2 + 2x + 2 = x ^ 2 (x + 1) + 2 (x + 1) = (x ^ 2 + 2) (x + 1). En el último paso, factoriza x + 1 porque es un factor común.

El método FOIL

    Factoriza trinomios del tipo ax ^ 2 + bx + c usando el método FOIL - primero, externo, interno, último. Un trinomio factorizado consta de dos binomios. Por ejemplo, la expresión (x + 2) (x + 5) = x ^ 2 + 5x + 2x + 2 (5) = x ^ 2 + 7x + 10. Cuando el coeficiente principal, a, es uno, el coeficiente, b, es la suma de los términos constantes de los binomios, en este caso dos y cinco, y el término constante del trinomio, c, es el producto de estos términos.

    Factoriza el mayor factor común, si hay uno. Encuentre dos factores de a, haciendo una lista de todos los factores posibles antes de continuar si a no es uno o un número primo. Multiplica cada número por x. Estos son el primer término de cada binomio. En muchos trinomios, el coeficiente a es igual a 1. Considere el ejemplo 3x ^ 2 - 10x - 8. No hay un factor común, y las únicas posibilidades para los primeros términos son 3x y x. Esto proporciona los primeros términos de los binomios: (3x +) (x +).


    Encuentra los últimos términos de los binomios al multiplicar para encontrar un número igual a c. Usando el ejemplo anterior, los últimos términos deben tener un producto de -8. Hay una serie de factorizaciones para -8, que incluyen 8 y -1 y 2 y -4. Haga una lista de todos los factores posibles antes de continuar.

    Busque productos externos e internos resultantes de los pasos anteriores, para los cuales la suma es bx. Use prueba y error para probar los factores encontrados en el paso anterior. Comprueba la respuesta multiplicando usando el método FOIL. (3x + 2) (x - 4) = 3x ^ 2 - 12x + 2x - 8 = 3x ^ 2 - 10x - 8